Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Understanding the Out-gassing Phenomenon

Oil & Gas
Jim Cahill

Understanding the Out-gassing Phenomenon

Author: Jim Cahill

Out-gassing is a scenario where a fluid enters a pipe as a liquid and exits as a liquid and gas. While it might sound identical, this is a separate occurrence from flashing and will be explained in this article.

Flashing is where a pure fluid’s (eg. water) pressure falls below the vapor pressure. The liquid absorbs heat and starts a phase change into a vapor. Flashing is relatively easy to predict because it can be modeled by the ISA/IEC Liquid Sizing Equations.

Out-gassing differs from flashing because there are multiple constituents in the flow stream. So, it will not have the same characteristics as a pure fluid. In out-gassing a pressure drop will cause the gas to come out of the liquid mixture. All of this happens relatively quickly compared to flashing. Unlike flashing, the ISA/IEC sizing equations do not accurately account for out-gassing. Emerson’s Fisher research engineers have developed a proprietary technique for addressing the range of Cv’s that out-gassing can produce. A great real world example of out-gassing is a soda can. The gas is compressed with the liquid in the can. When the lid is popped, the gas escapes quickly because of the sudden drop in pressure.

Out-gassing generally causes two types of damage. One type of damage occurs due to the high velocity jets coming out of solution, which carry small liquid particles. These liquid particles impinge on internal surfaces at very high velocities causing erosion damage. Secondly, the high velocity jets coming out of solution tend to impinge on the body wall and trim parts causing vibration. The jet size is determined by the size of the cage hole/window through which the fluid flows. Breaking up the large jets into smaller jets helps to prevent vibration, as well as damage from entrained particulate.

The most severe out-gassing application is separator letdown service. For this demanding application, a Fisher DST-G [dirty service trim for out-gassing applications] trim uses a different component in place of the lower cage. The slotted lower cage design facilitates smaller jet formation as the jets discharge from the cage into the body expansion area. By separating the jets, damage is prevented by forming many smaller jets that contain far less energy. The large slotted design also allows particles up to ¼ inch in size to pass through the trim, reducing problems associated with plugging.

The DST-G block forged valve body uses an expanded body cavity that allows the entrained gases to expand. This expansion reduces the damaging effects of the previously mentioned high velocity jets. The protected seat design also allows the shutoff function of the valve to be separate from the throttling areas of the trim.

To discuss your application, contact your local Emerson sales office.

Related Articles

Sulzer Cost effective sustainable fuel production

Cost effective sustainable fuel production

Benchmarking Market Report highlights cost-leadership of Sulzer Chemtech BioFlux Process Technology for Renewable Fuels production BioFlux® process technology for renewable fuel…

Related Whitepapers

Expansion Joint Expertise Improves Industrial Wastewater System Reliability

The majority of industries have wastewater treatment plants. Government agencies and local governments require these facilities to meet pretreatment requirements. Pretreatment rules were enacted to prevent…

How to Decrease Oil Changes with Bearing Isolators [Inforgraphic]

Learning how to decrease oil changes can be time- and money-saving. Oil life can be long if contamination is eliminated, which is easier said than…

Synchronous Machines Are The Optimal Choice For Heavy Industry

TECO-Westinghouse experience assures superior performance and reliability For over a century, Westinghouse has been the pacesetter in the design and production of electric machines for heavy…

Why FLEXXORs Are Designed Differently

J. Hilbert Anderson, President of Coupling Corporation of America, discusses some of the reasons why FLEXXORs are designed differently from all other flexible couplings, and…

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Join the #PumpTalk Community


By submitting this form, you are consenting to receive marketing emails from: Empowering Pumps & Equipment, 2205-C 7th Street, Tuscaloosa, AL, 35401, http://www.empoweringpumps.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact